
2652 RICHARD C. TOYMAN Vol. 47 

2. The specific heat-temperature curves of the various nitromethanes 
showed distinct irregularities, which indicate the presence of several species 
of molecules in the liquid. 

3. Measurements of vapor pressure and density failed to show corre
sponding irregularities. 

4. A nitromethane gel with phosphorus pentoxide and a trace of water 
is described. 

5. The probability of an abnormal boiling point for nitromethane which 
has been subjected to intensive drying is discussed. 
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In order to account for the large temperature coefficient of the rate of 
ordinary chemical reactions, it seems impossible to escape the conclusion 
of Arrhenius1 that the molecules which actually enter into the reaction 
must be in an activated form containing considerably more energy than 
the normal molecule.2 In accordance with this view of Arrhenius, it has 
been customary to use the following equations to express the rates of first 
order unimolecular and second order bimolecular reactions, respectively, 
as functions of the temperature 

-dC/dt = kC = V e-E/RT c (1) 
-dC/dt = kCC = /feT'A e~W + E')/RT] CC (2) 

where E or (E + E') are the energy contents per mole of the activated 
molecules entering into the reaction.3 

Since the older derivations of these equations have involved special 
assumptions, a somewhat more elaborate analysis of the justification for 
the equations will not be out of place. We shall find that the magnitudes 

1 Arrhenius, Z. physik. Chem., 4, 226 (1889). 
2 The transition of the molecule from the normal to the activated form may be 

merely a change to a higher quantum state or other tautomer of high energy content 
or may involve dissociation or other change which is usually regarded as chemical. 
In the sense of the Arrhenius formulation, the "residual molecules" of Rice, Fryling and 
Wesolowski [THIS JOURNAL, 46, 2405 (1924) ] would often seem to be one special kind 
of activated molecules. 

3 The actual equation proposed by Arrhenius had for any order of reaction the form 

, Z, = TT^„ where E is the total energy of activation. The introduction of the term 
a 1 Kl' 

T1A, however, in Equation 2 for ,bimolecular reactions is customary, since the number 
of collisions between molecules is proportional to this power of the temperature. 
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of the necessary energy of activation will be given, approximately at least, 
by Equations 1 and 2 under a wider variety of conditions than have hitherto 
been considered. This is of importance in connection with the difficulties 
that are encountered in finding mechanisms of activation that will supply 
fast enough the large energies calculated from these equations.4 I t would 
be an easy way out of these difficulties if only we could deny the validity 
of the Arrhenius equation, but this does not now seem possible. 

Part I. Unimolecular Reactions 

1. Introduction.—Derivations of Equation 1 for the rate of a uni
molecular reaction have usually been based on one or the other of two pos
sible but not inevitable assumptions as to the mechanism of activation. 
One class of proofs assumes a mechanism of activation so fast compared 
with the rate of reaction as to maintain the full Maxwell-Boltzmann quota 
of molecules in the activated state, and since this quota is proportional to 
e~E/RT, it is easy to see why this factor then enters into the expression for 
reaction velocity.6 A second class of proofs assumes that the mechanism 
of activation consists in the absorption of radiation of the frequency given 
by the quantum relation E = Nhv, and since the density of radiation of 
frequency v is approximately proportional to e~hv/kT, it is again easy to 
see why the dependence of the rate on temperature should be that given 
by the Arrhenius equation.6 

In our present treatment, we shall not have to assume a velocity of ac
tivation necessarily fast enough to maintain the full Maxwell-Boltzmann 
quota of activated molecules, nor assume any specific mechanism for the 
activational process. We shall, however, assume that the unactivated 
molecules are in statistical equilibrium and that the specific rates at which 
molecules pass from one state to another are not affected by the progress 

4 See, for example, Tolman, THIS JOURNAL, 47, 1524 (1925). 
8 The assumption that the full quota of activated molecules is maintained is appar

ently present, for example, in the derivations of Marcelin [Ann. Physik, 3, 120 (1915)], 
Rice [Brit. Assoc. Advancement Sci. Kept., 1915, 397], Rodebush [THIS JOURNAL, 45, 
606 (1923)], and Christiansen and Kramers [Z. physik. Chem., 104, 451 (1923)]; also 
indeed in the original quasi-thermodynamical derivation of Arrhenius. 

In the derivations of Marcelin, Rice and Rodebush no hypothesis is made as to 
the mechanism of the activational process, there is merely the tacit assumption that it 
is fast enough to maintain statistical equilibrium as far as concerns the different states of 
the reactant. In the derivation of Christiansen and Kramers it is assumed that the 
full quota of activated molecules is maintained by collisions of the second kind between 
normal molecules of the reactant and activated molecules of the product which have 
not yet fallen to their normal state. In accordance with their treatment the reaction 
will not continue first order unless the assumed mechanism does suffice to maintain the 
full quota. 

6 This assumption is present in the radiation theory in its simple form as first given 
by Perrin and W. C. McC. Lewis and also in its later more elaborated forms. See 
Tolman, THIS JOURNAL, 42, 2506 (1920); and Ref. 4 above. 
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of the reaction. I t is further to be noted that our proof is general enough 
to allow for a series of different activated and unactivated states. 

2. A Relation between the Velocities of Reverse Processes.—In 
carrying out our treatment we shall first need to obtain an important rela
tion between the velocities of reverse processes which can be derived with 
the help of the principle of microscopic reversibility. The best formulation 
and precise range of validity of this principle have not yet been determined; 
nevertheless, the principle is one that has found increasing application 
in chemical kinetics, and we need not hesitate to use it in the present con
nection.7 If we have a system in statistical equilibrium, the principle 
requires not only that the number of molecules in any given state shall 
remain constant, but that the number leaving that state in unit time by 
any particular path shall be made up by the entrance of an equal number 
of molecules by the reverse of that particular path. 

Consider now a system in statistical equilibrium and let C1 and Ca be 
the concentrations of molecules in two states, 5, initial state and Sa 

activated state having, respectively, the energies per mole Et and Ea. 
We may obviously put the rate at which molecules are passing from state 
Si to 5„ proportional to the concentration Cj, and the number passing in 
the reverse direction proportional to C0, as given by the equations 

dCJdt = had, and —dCJdt = aaiCa (3) 

where for convenience we might call @m a coefficient of activation and 
aai the corresponding coefficient of deactivation. Since, however, the 
system is in statistical equilibrium, the number of molecules in each state 
is a constant, and if we assume the principle of microscopic reversibility, 
this constancy is maintained by an exact equality in the numbers of mole
cules passing in the reverse directions between each pair of states, which 
leads to the equation 

Piad = aaiCa (4) 

The two concentrations, however, are connected in accordance with the 
Maxwell-Boltzmann distribution law by the equation 

^ = ^ e - f f i a / R D (5) 
Ci pi 

where pa and p, are the a priori probabilities of the two states and Eia 

is the energy necessary to raise the molecule from state Si to S0. Sub
stituting in (4) we obtain the following very important relation between 
the coefficients of activation and deactivation 

fc^i^rlWD (6) 
Pi 

This significant equation makes no assumption as to the mechanism 
of the activational and deactivational processes and the coefficients /3,„ 

7 For references to the history of this principle see Tolman, Proc. Nat. Acad. Sci., 
11,436 (1925). 
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and aai may be dependent on the total concentration of molecules present 
if the mechanism is collisional, or on the concentration of radiant energy 
if this is involved, or on whatever factors may be operative. It should also 
be observed that the formulation of the proof and the final equation are 
just as valid in case the classical-theory statistical mechanics or the quan
tum-theory statistical mechanics is applicable to the problem at hand. 
In the first case, the a priori probabilities p{ and pa can be taken propor
tional to infinitesimal phase areas of the magnitude dq\... . dpn, corre
sponding to different microscopic states of the molecule; in the second case 
they can be taken proportional to finite areas of the magnitude hn corre
sponding to different quantum states. 

It must further be noted that Equation 6 has been rigorously derived 
only for a system in statistical equilibrium. We should usually expect, 
however, that the specific rates at which molecules pass from one state 
to another will not be greatly affected by the deviation of the system from 
equilibrium, and in what follows we shall assume that Equation 6 is valid at 
any stage of the reaction up to complete equilibrium. It should be noted 
that this assumption is the less questionable, since it only necessitates the 
constancy of the ratio of /3,-„ and aai, rather than their individual constancy. 

3. Rate of Activation and Unimolecular Reaction.—We are now ready 
to treat the general case of first-order unimolecular reactions in which 
the total process consists in the passage of molecules from the inactive to 
the active condition followed by reaction on the part of a certain fraction 
of the activated molecules. If we call states Si unactivated and states 
Sa activated, we may write for the rate at which molecules are being 
activated 

dCaot/dit = 22 0iaQ (7) 
i a 

A certain fraction of the molecules which arrive in any activated state 
Sa may react and the remainder fall back into the unactivated states. 
For the fraction G0 that reacts we may evidently write 

2 aaf 

where 2 a,,,- and Sa0/ are the total specific rates at which molecules pass 

from the activated state Sa back to any of the initial unactivated states 
Si, or forward to any of the final unactivated states Sf of the products of 
the reaction.8 

Introducing the fraction of the activated molecules which react into 
Equation 7 for the rate of activation, we obtain for the rate of a uni-

8 In case the reaction is an isomeric change, the final states S; will be those of a 
single molecule. In cases of dissociation the designation S; stands for a. simultaneous 
condition of more than one molecule. In the formulation given we have felt justified in 
neglecting the passage of molecules from one activated state to another activated state. 
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molecular reaction 
-dC/dt = 2 S G3 ft. Q (9) 

i a 

and so far have introduced no hypothesis except our general picture as 
to the nature of the process, 

If we now assume statistical equilibrium for the unactivated molecules, 
we may substitute for C{ the Maxwell-Boltzmann expression 

C = CPie-(Zi/RT> 
* ^ pie-^i/RT) (10) 

where C is the total concentration of unactivated molecules which is of 
course sensibly equal to the concentration of reactant. Furthermore, 
assuming the validity of the result obtained from the principle of micro
scopic reversibility, we may substitute for j3ia the expression given by 
Equation 6. 

&„ = a a < r e-(Eia/RT) (H) 
Vi 

We obtain 
._ S 2 6. a* f , e - W R T ) 

-IS = LJ. c (12) 
At sp.e-(Ei/RT) *• ' 

i 

Or for the specific reaction rate 

k = - l- St = LJ. m \ 
C At Xp16-(EiZRT) {i6> 

i 

4. Temperature Coefficient of Unimolecular Reaction Rate.—In order 
to obtain the final result in the desired form, we must take a logarithmic 
differentiation of this value of k with respect to the temperature. We 
obtain 

W !"e^.-EV/sn JlM^ + IiSp + ^ j 
AT k S p.e-(Ei/RT) 

J,pie-(Ei/RT)\_iL 
iJ2_ )RT> 

S p. e- (E1-/RT) 
(14) 

It is evident from the principles of averaging, however, that this may be 
rewritten in the form 

d log k A log 9„ d log a„i _Eo_ _ _Ei_ / 1 5 \ 
AT AT + A T + RT* RT2 K ' 

where the double line indicates that the average is taken for the activated 
molecules that actually enter into the reaction, and the single line indicates 
the average for the unactivated molecules. 

In general, however, we shall expect the first two terms on the right-
hand side of Equation 15 to be small, since by referring to Equation 8 
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for the value of 9a we see that both terms in question contain merely 
the temperature coefficients of the specific rates at which molecules fall 
from states of high energy content to those of lower energy content. Such 
deactivations, however, can occur as far as we can see only through the 
loss of energy on collision with other molecules or through the emission 
of radiation. The first of these processes has a small temperature coeffi
cient, since the number of collisions does not change rapidly with the 
temperature. The second process can be taken as occurring by a combina
tion of spontaneous emission and induced emission as shown by Einstein's 
deduction of the Planck radiation law (1917). The rate of spontaneous 
emission is unaffected by temperature, while the rate of induced emission 
is dependent on the density of radiation of the particular frequency 
involved and the temperature coefficient for the combined process can 
never be large at ordinary temperatures.9 

Assuming, then, that the first two terms are negligible, Equation 15 
can be rewritten in the form 

dlog£ Wg-Ej = E_ (m) 

where E is the energy of activation. 
Special attention is called to the fact that the quantity E = Ea — Ei 

occurring in Equation 16 which we have called the energy of activation 
is the excess of the average energy of the molecules that do react over the 
average energy of the unactivated molecules. It should further be noted 
that if we do not try to treat the subject as generally as we have done 
above, but introduce the common assumption of statistical equilibrium 
for all molecules and specific rates of reaction for activated molecules 
which are independent of the temperature, the derivation of Equation 
16 is then easily shown by the methods used above to be exact, provided 
we take E as the difference between the average energy of the molecules 
that react and the average energy of all the molecules. This result is in 
agreement with the earlier derivation of the author, which assumed, how
ever, a special mechanism of activation.10 

9 For the specific rate of deactivation by emission of radiation we may write aai = 
Aai + Bai p where Aai and Ba, are Einstein's coefficients of spontaneous emission and 
induced emission and p is the density of radiation of the frequency v involved. Sub
stituting the known relations Aai = — 3 — Bai and p = •—5— hv/kT — 1 anc* taking 

ehv/kT d log cca- kv 1 
the logarithm we obtain, log aai = log ehv/kT _ 1 + const., —-^— = ^ i ehv/kT - \ 
The maximum value that this temperature coefficient can attain, however, is seen to be 
1/T, which is not large compared with the usual values of E/RT2. 

10 Tolman, THIS JOURNAI,, 42, 2506 (1920). 
In connection with the discussion presented in the foregoing paragraph it should be 

noted that we may expect the average energy of the unactivated molecules to be prac
tically the same as the average energy of all the molecules. 
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It certainly seems most convenient to continue to use the term "energy 
of activation" or "heat of activation" in the above sense to mean the 
excess of energy which on the average has to be supplied to the molecules 
that react. Lewis and Smith,11 however, in a recent article have proposed 
to re-define the heat of activation as the minimum internal energy which 
a molecule must have in order to be able to react. It is evident, however, 
that the quantity thus defined is not the one occurring in the Arrhenius 
equation, and hence it would seem unfortunate to adopt the proposed 
change in definition.12 

5. Final Expression for Unimolecular Reaction Rate.—Returning now 
to our original problem, if we integrate Equation 16, neglecting the change 
of E with the temperature, we can obtain the original equation we started 
out to test 

-dC/dT = k'e-(E/RT) Q (1) 

where k' is the constant of integration. 
This completes our analysis of the justification of using the Arrhenius 

Equation 1 to calculate energies of activation. It seems evident from an 
examination of the assumptions involved in the deduction that the equation 
will be approximately correct under a wider variety of conditions than 
have hitherto been considered. The result emphasizes the necessity of 
finding mechanisms of activation capable of supplying the large energies 
calculated from Equation 1. 

In this connection the treatment of the maximum rate of activation by 
collision recently given by Lewis and Smith13 does not seem entirely satis
factory. They assume that the average internal energy of unactivated 
molecules might be available as part of the energy E occurring in the 
Arrhenius equation, but in accordance with the foregoing treatment, the 
quantity E is the excess in the average energy of the molecules that react 
over the average energy of the unactivated molecules. 

It should be noted also, as already pointed out by the author,4 that the 
possibility of raising the molecules from their average energy content to 
the activated state by a' series of collisions which carry the molecules 
through intermediate states does not seem a probable method of obtaining 
the necessary rates of activation by collision, since to offset the increased 
specific rate of activation from an intermediate state, we have the decreased 
concentration of molecules in the intermediate state, as well as the possi
bility of loss of energy by collisions of the second kind. 

11 Lewis and Smith, T H I S JOURNAL, 47, 1515 (1925). 
12 Using the assumptions which were mentioned above as leading to an exact der

ivation of the Arrhenius equation, but inserting their new definition of the heat of 
activation, Lewis and Smith indeed discover (Ref. 11, pp. 1513-1514), as would be ex
pected, that they do not get an exact derivation of the Arrhenius equation. 

" Ref. 11, pp. 1513-1514. 
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Part II. Bimolecular Reactions 
The justification for using our original equation (2) for bimolecular 

reactions is rather simpler. A bimolecular reaction could result either 
from the collision of two molecules which have previously been activated 
or from the collision of molecules having more than average kinetic energy, 
thus merging the process of activation and reaction. We shall treat the 
two cases separately. 

1. The Molecules Have Been Previously Activated.—If reaction re
sults from the collision of molecules which already have been activated, it is 
evident that the reaction can be of the second order over a range of concen
trations only if the rate of activation is fast enough compared with the rate 
of reaction, so that the full Maxwell-Boltzmann quota of activated mole
cules is maintained. Hence for the concentration of molecules of kind 
M or M' in a given activated state Sa or SJ we can write the expressions 

CPae-(zJRT) . c , = C Po'e~<•**'/RT) 
S p. e - (.Ei/RT) a " •" spSe-W/RT) (17) 

where the summations are to be carried out for all possible states. Then, 
since the number of collisions between activated molecules is proportional 
to the square root of the absolute temperature, we may write for the rate 
of reaction 

-dC/dt = T1A S S kaa' Ca Ca' 
a a' 

Th 2 S Ka' Pa P/ e~ KE° + Ea')/RT] 
» L S r = " "' MSI 

CCAt f^pie-(Ei/RT)\/^p.'e-(Ei'/RT)\ K ' 

where kaa> is a constant depending on the particular pair of activated states 
involved, and the double summation in the numerator is to be taken over 
all activated states, that is, all states for which kaa' has an appreciable value. 

Carrying out a logarithmic differentiation we obtain 
T1A S S kaa' Pa Pa' B~ ^Ea + Ea')/RT] E" + E"' 

d log ft = d log T1A 1 a a' °° Va v" RT2 

dT dT + k f2pie-t-Ei/RT)\f2p(>e-(Ei'/RT)\ 

S pt e- (E1ZRT, J L 2 P1' e- W/RT>ff2 

Zpie-(
Ei/RT) X,Pi e-(Ei'/RT) 

i i 
This can evidently be rewritten in the form 

dlogfe = d log T1A Eg + Eg' - JS< + JS/ (2Q) 

dT dT "^ RT* 

where the double lines indicate an average taken for the molecules that react 
and the single line an average taken for all molecules. The numerator in 
the last term of Equation 20 is evidently the average energy of activation 
which we may denote as previously by £ + E'. Integrating, neglecting 
the small change in the energy of activation with temperature we can 

(19) 
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evidently obtain the desired equation 

—Ac/At = k' PA e RT~ CC (2) 
where k' is a constant of integration. Hence, under these circumstances 
the justification for using Equation 2 to calculate energies of activation is 
very satisfactory. 

2. Activation and Reaction Due to the Same Collision.—In the case 
of bimolecular reactions, in addition to the possibility that reaction results 
from the collision of previously activated molecules, we have the special 
possibility that normal unactivated molecules will react providing they 
collide with the proper relative velocity. Such a mechanism could be 
regarded as merging the process of activation and reaction, and has 
appealed favorably to Hinshelwood.14 

In the present state of our knowledge of molecular mechanics we can 
not, of course, specify the precise nature of the collisions which would lead 
to reaction. If, however, there are cases in which the suggested merging 
of activation and reaction does take place, it would seem reasonable to 
assume as a first approximation that reaction occurs for all collisions in 
which the component of velocity parallel to the line of centers of the 
molecules exceeds a minimum value V. Now it has been shown by 

_ 1 MM' V* 

Langevin and Rery ls that e I M + M' RT is the fraction of all collisions 
between molecules of molecular weights M and M' in which this is true. 
Hence we may evidently again write for the rate of reaction 

-dC/dt = V Th e- V.E + E')/RT] CC (2) 
MM' 

where E + E' = V2 ^+M' V% ( 2 1 ) 

In this case the quantity E + E' would be a sort of minimum rather than 
average energy of activation; the minimum and average, however, are not 
far apart owing to the form of the Maxwell distribution law. Other 
plausible assumptions as to the conditions for the merging of activation 
and reaction lead to not very different results. 

There is no way at the present time of deciding between the two proposed 
mechanisms of bimolecular reaction, preliminary activation or activation 
through the same collision that leads to reaction. The writer, however, 
is inclined to believe the former alternative the more probable. Both 
mechanisms agree with our original equation (2), the energy of activation 
being at least as great as the quantity (E + E'). 

Summary 
1. The familiar equation 

-dC/dt = kC •= k'e-(E/RT)C (1) 
connecting the rate of first-order unimolecular reactions with temperature 

"Hinshelwood and Burk, Proc. Roy. Soc, 106A, 284 (1924). Hinshelwood and 
Hughes, / . Chem. Soc, 12S, 1841 (1924). 

15 Langevin and Rery, Le Radium, 10, 142 (1913). 
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and energy of activation has usually been derived either on the assumption 
of a rate of activation fast enough to maintain the full Maxwell-Boltzmann 
quota of activated molecules, or on the assumption that the activational 
process consists in the absorption of radiation. In this article a derivation 
has been presented making no specific assumptions either as to the rate or 
mechanism of activation, which shows that Equation 1 will be at least 
approximately valid under a wide variety of conditions. 

2. Derivations have also been presented for the familiar equation 
-dC/dt = kCC = k' Tlh e- KB + E')/RT] CC (2) 

connecting the rate of second-order bimolecular reactions with temperature 
and energy of activation, both on the assumption that the reacting mole
cules have received their energies of activation preceding the collision which 
leads to reaction, and on the assumption that the processes of activation 
and reaction are merged in one collision having sufficient available kinetic 
energy. 

3. These results re-emphasize the necessity of discovering mechanisms 
of activation which will supply fast enough the large energies of activation 
calculated from Equations 1 and 2. 

4. Since the quantity E occurring in Equation 1 is the excess per mole 
in the energy of the molecules that react over the average energy of the un-
activated molecules, it cannot be assumed that this average energy is 
available as part of the energy of activation. 
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The purpose of this investigation was to examine hydrogenation and 
dehydrogenation of nickel catalysts, prepared in different ways and with 
different activities,1 by means of the X-ray powder-diffraction method 
to obtain information upon three questions: (1) whether there is a funda
mental difference in the space lattice; (2) whether there is a fundamental 
variation in the particle size; (3) whether X-ray analysis will indicate the 
condition of the surface of nickel catalysts. 

1 Excellent comparative studies of activity as it depends upon the method of prepa
ration of the catalyst have been made recently by (a) Armstrong and Hilditch, / . Soc. 
Chem. Ind., 42, 217 (1923); (b) 44, 701 (1925); (c) Thomas, ibid., 42, 21T (1923); (d) 
Adkins and Lazier, T H I S JOURNAL, 46, 2291 (1924). This last paper states that nickel 
catalysts which show different hydrogenation and dehydrogenation activities are even 
more widely dissimilar in their abilities to break carbon chains. 


